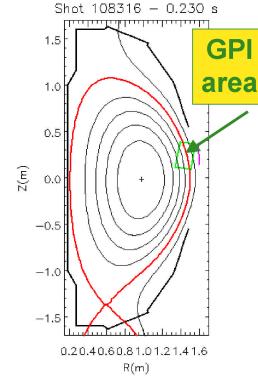
US-Japan Workshop on Spatiotemporal Description of Edge Plasma Transport in Theory and Experiment September 6, 2003

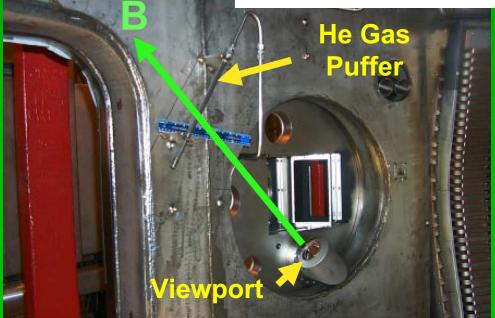
Analysis of GPI Data from NSTX and C-Mod

D. P. Stotler, D. A. D'Ippolito¹, K. Hallatschek², S. Klasky, R. J. Maqueda³, T. Munsat, J. R. Myra¹, W. M. Nevins⁴, N. Pomphrey, D. Silver⁵, J. L. Terry⁶, X. Q. Xu⁴, S. J. Zweben

¹Lodestar, ²IPP-Garching, ³LANL, ⁴LLNL, ⁵Rutgers, ⁶MIT

Outline

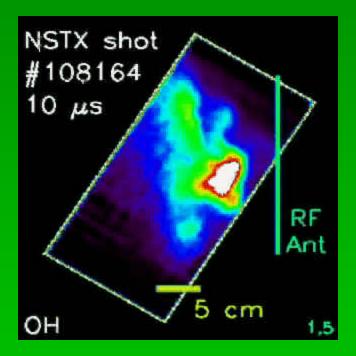

Experiment


- Description of GPI diagnostic,
- Movies from NSTX,
- Turbulence characteristics,
- Movies from C-Mod,
- Compare C-Mod & NSTX turbulence.
- Analysis & Theory
 - NLET & BOUT k_{pol} comparison with C-Mod,
 - DEGAS 2 benchmark,
 - Use GPI data to infer 2-D $n_e(x,y,t)$,
 - Apply to theory of blob motion.
 - Extract velocity field from GPI data,
 - Feature tracking,
 - 3-D visualization of GPI data,
 - Principal Component Analysis.

Gas Puff Imaging (GPI) Experiments Designed to Measure 2-D Structure of Edge Turbulence

- Puff neutral gas near outer wall,
- View with fast camera fluctuating visible emission resulting from electron impact excitation of that gas,
- Use sightline || to B to see radial & poloidal structure,
 - Compare with turbulence measured by probes,
 - And with output from plasma turbulence codes.

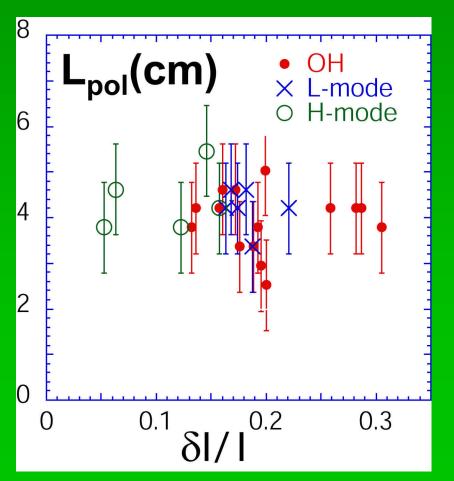
NSTX Configuration

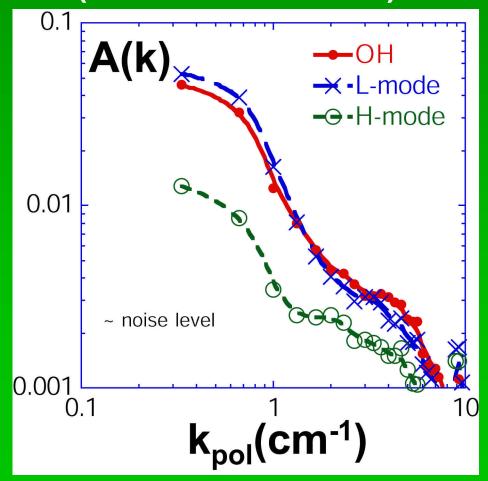


GPI Diagnostic Interpretation

- Hel / D_a light emission "I" visible where 5 eV < T_e < 50 eV,
- I μ n_e^a T_e^b where a » 0.5 (0.5) and b » 0.7 (0.5) near center of cloud for Hel in NSTX (D₂ in C-Mod),
- Space-time structure of I similar to n_e^a,
 - but dl/l » a dn_e/n_e
- Fluctuation spectra of I similar to probe and reflectometer
- GPI light gives approximate structure of edge turbulence

Composite NSTX GPI Movie

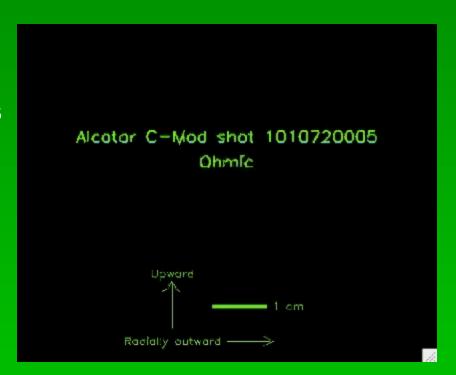

10 μs / frame 28 frames



For more NSTX & C-Mod GPI movies, see http://www.pppl.gov/~szweben

Poloidal Correlation Length & k-Spectrum

- L_{pol} » 4 cm or $k_{pol}r_s$ » 0.2 (similar to other experiments)
- H-mode dl/l lower than L-mode (with much variation)



Summary of NSTX Results So Far

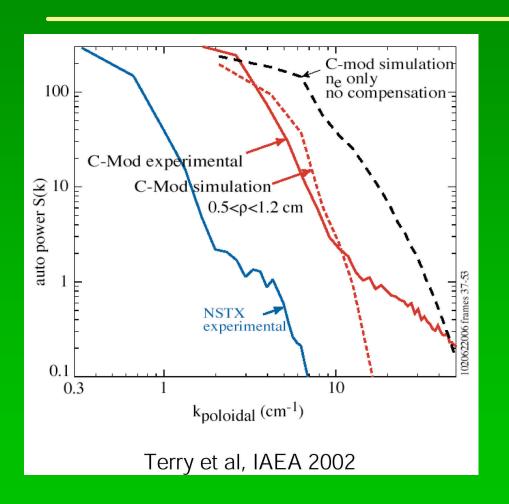
- Images consistent with previous measurements
 - Large fluctuation level in edge
 - Broad frequency & k-spectrum
 - Approximately isotropic structure ^ B
- Coherent structures seem to move through edge
 - "Blob-like" look similar to DIII-D IPO's
 - "Wave-like" look similar to EDA, QCM
- H-mode generally more quiescent than L-mode
 - Considerable variation in behavior
 - Transitions can happen very fast

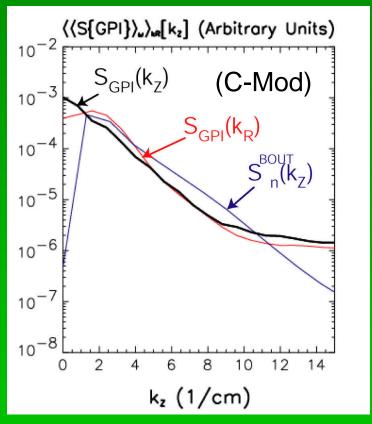
Composite Alcator C-Mod GPI Movie

4 μs / frame Separatrix = solid line Limiter = dashed lines Star = gas puff nozzle

For more NSTX & C-Mod GPI movies, see http://www.pppl.gov/~szweben

NSTX & C-Mod GPI Turbulence Qualitatively Similar

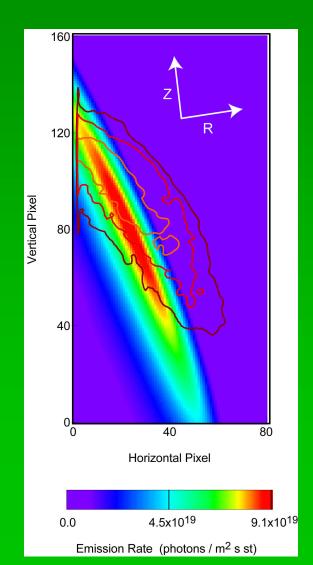

- Large, intermittent, transport events « blobs or filaments,
- Strong, non-Gaussian,
 SOL turbulence,
- Structures move poloidally & radially,
 - Speeds ³ 10⁵ cm/s.


	C-Mod	NSTX
B _T	2–4 T	0.3-0.4 T
L _c	~5-10 mm	~40 mm
t _c	~10 ms	~40 ms

Compare GPI Data with Simulations

- 3-D nonlinear, drift-ballooning codes,
 - NLET « Non-Linear Electromagnetic Turbulence (Hallatschek, IPP-Garching)
 - BOUT « BOundary Turbulence (Xu, LLNL)
- Poloidal wavenumber spectra in rough agreement with observations.
- Dominant linear instability causing turbulence is resistive ballooning in both codes.

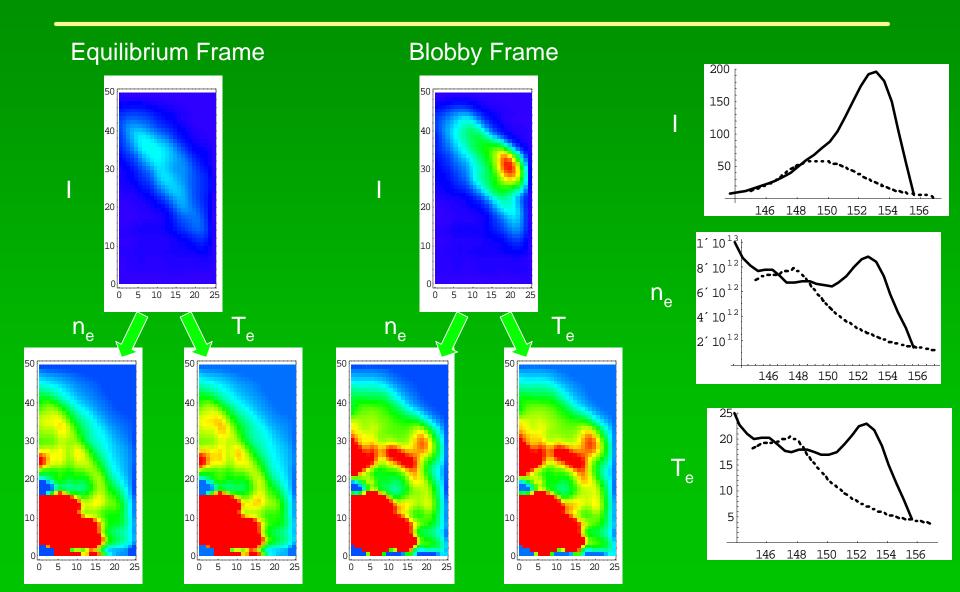
Simulated & Observed kpol Spectra

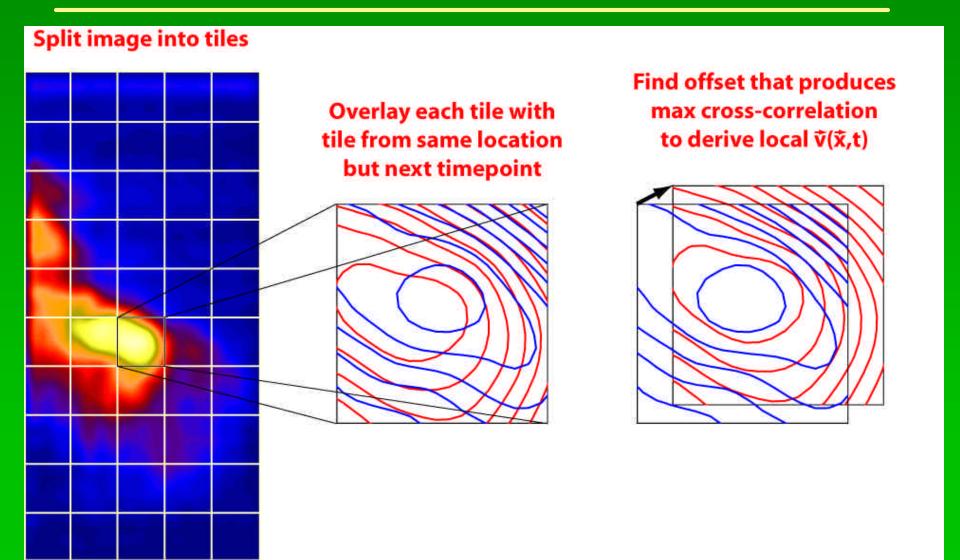


Nevins, et al. IAEA 2002

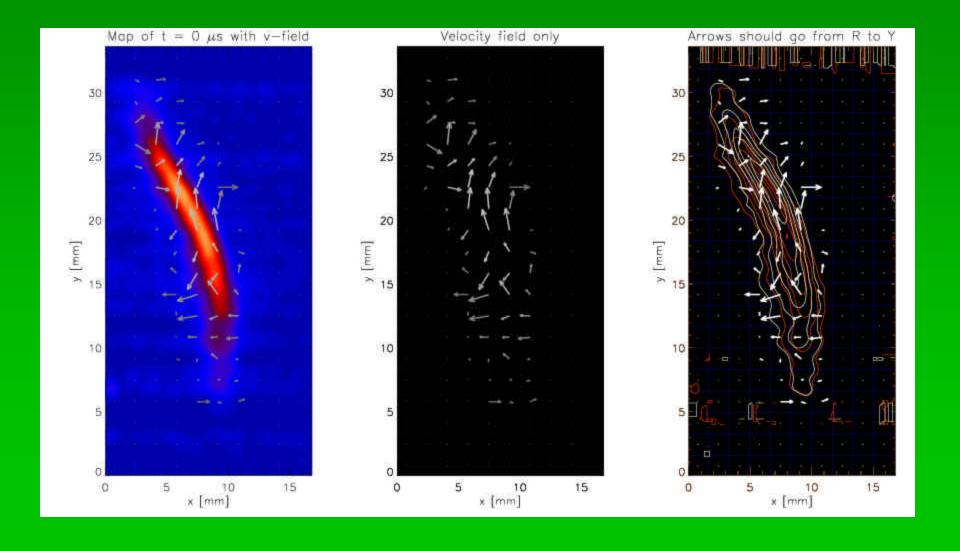
NLET includes atomic physics function and spatial response of experimental optical system, suppressing small scale features

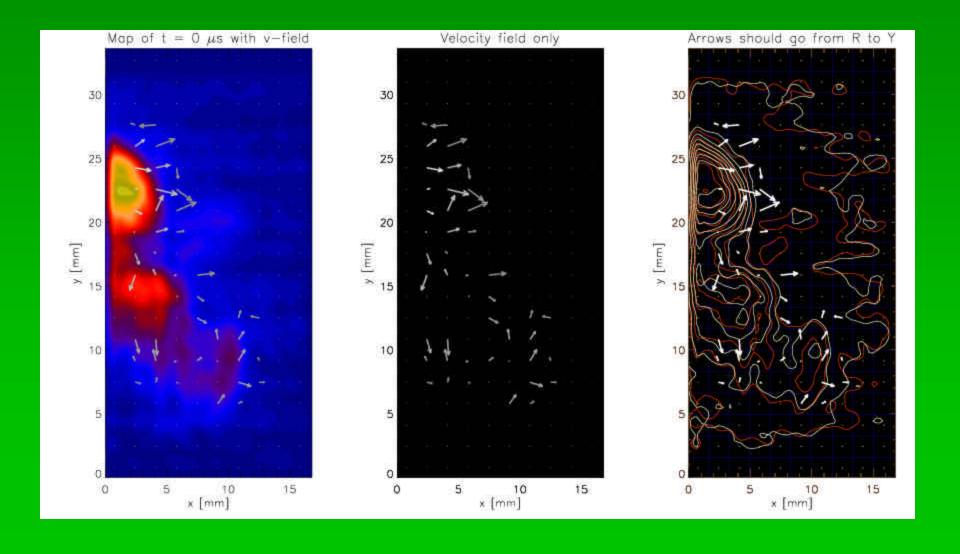
DEGAS 2 Benchmark Against NSTX GPI


- 3-D DEGAS 2 with simulated camera view,
 - Steady state plasma with n_e, T_e constant on flux surface.
- Simulated & observed clouds angled 15°,
 - Simulation closely follows plasma contours,
 - GPI clouds not aligned with separatrix,
 - Generally, GPI cloud orientations vary 20°,
 - But, equilibrium separatrix angles do not vary that much!
 - GPI hardware has not been moved
 - Þ can't blame calibration!
 - P Plasma parameters vary on flux surface and / or magnetic equilibrium not as predicted by EFIT !?!


Inferring 2-D Time-Dependent n_e & T_e from GPI Data J. Myra & D. D'Ippolito, Lodestar

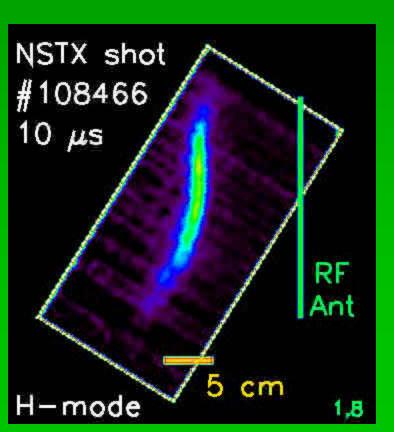
- $I = n_0 F(n_e, T_e),$
 - F « atomic physics (known function),
 - Get n_0 from DEGAS 2,
 - Assume n_0 = constant over turbulence timescale.
 - Experimental data ▷ l(x,y;t),
 - If know n_e(T_e), can invert data to get 2-D n_e!
 - E.g., assume n_e & Te passively convected together by ExB turbulent motion.
 - Use DEGAS 2 simulation based on Thomson scattering profile,
 - Calibrate against median GPI image ® shift & rotate n₀ to match.
- Possible application:
 - Lodestar theory takes $n_e(x,y)$ & computes F(x,y),
 - Use resulting ExB velocity to find blob shift,
 - Compare with next frame.


Comparison of n_e and T_e for Equilibrium & Turbulent Frames

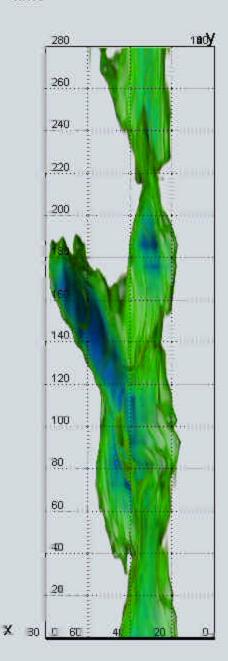

Optical Flow Technique

Velocity Field – NSTX 108466

Velocity Field – NSTX 108296

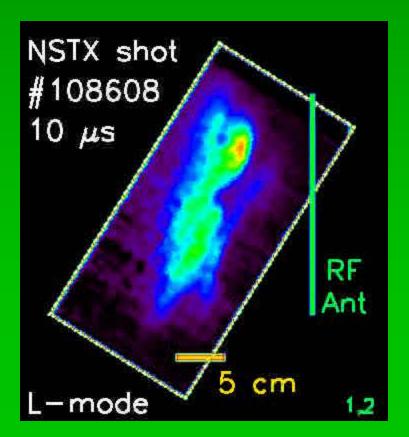


Feature Tracking D. Silver, Rutgers U.

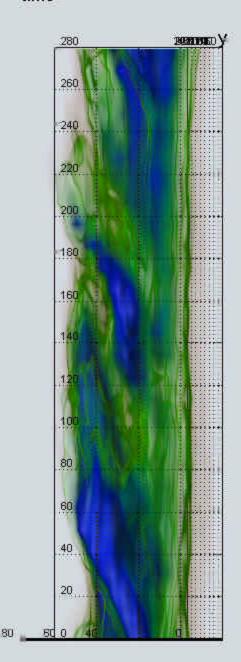

- Visualization software uses "thresholds" to identify & track objects in multidimensional datasets,
 - Has been applied in wide variety of areas.
- Yields number & size of blobs vs. time,
 - Another way to summarize large GPI data set for comparison with codes.
- We consider first 2-D vs. time GPI data as 3-D objects.

Visualization by S. Klasky

- Time: vertical axis (10 ticks / frame)
- Horizontal plane
 ↔ 80 x 160 camera image
- Volume rendering highlights two narrow bands near middle (green) and peak (blue) of data set.
- Moving slice replicates GPI frames with lower values in red.



time



Visualization by S. Klasky

- Time: vertical axis (10 ticks / frame)
- Horizontal plane
 ↔ 80 x 160 camera image
- Volume rendering highlights two narrow bands near middle (green) and peak (blue) of data set.
- Moving slice replicates GPI frames with lower values in red.

time

Principal Component Analysis of GPI Data N. Pomphrey

- PCA commonly used in geophysical sciences,
 - R.W. Presendorfer "Principal Component Analysis in Meteorology and Oceanography" (Elsevier, 1988)
- Seeks structures that explain the maximum amount of variance in a 2-D data (space vs. time).
- Structures in space dimension are "Empirical Orthogonal Functions" (EOF),
 - Accompanied by complementary structures in time dimension called "Principal Components" (PC).
- Both sets of structures are typically orthogonal, by construction, in their own dimension
 - This orthogonality constraint can be relaxed.

Application to GPI

- GPI data stored as 2-D matrix G(M,N),
 - M = number of spatial points,
 - N = number of time slices << M.</p>
- Singular Value Decomposition of G = U S V^T is key to analysis,
 - Provides both EOF's & PC's.
 - Magnitudes of singular values of G, in diagonal matrix S, tell us fraction of variance within data set explained by each EOF spatial structure.
- Find that only small number (~5) of EOF's account for >90% of variance in GPI data for a given shot.
- However, do the calculated dominant EOF's have any physical interpretation?
 - Orthogonality property of EOF's may be problematic here!
- Do dominant EOF's from shot-to-shot look the same?
- PCA analysis of GPI data is at an early stage of development!

CONCLUSIONS

- Collected large amount of GPI data from C-Mod & NSTX under different conditions,
 - Technique constantly being tweaked & improved.
- Comparisons with probe data underway,
 - See work by J. Boedo.
- Simulations progressing,
 - Results intriguing,
 - But, much remains to be done.
- Analysis branching out,
 - Hope to find new insight into nature of turbulence.

References

- Zweben et al., Nucl. Fusion (to appear 2003),
 - NSTX GPI data analysis.
- Terry et al., Phys. Plasmas 10, 1739 (2003),
 - C-Mod GPI, comparison with theory & NSTX.
- Maqueda et al., Rev. Sci. Instrum. 74, 2020 (2003),
 - NSTX GPI description.
- Terry et al., IAEA 2002,
 - Turbulence in C-Mod, DIII-D, NSTX; comparison with theory.
- Terry et al, Phys. Plasmas 10, 1739 (2003)
 - C-Mod GPI.
- Stotler et al., J. Nucl. Mater. 313-316, 1066 (2003),
 - DEGAS 2 simulations of C-Mod GPI.
- Stotler et al., PET 2003,
 - DEGAS 2 3-D simulations of NSTX GPI.
- Myra et al., APS 2003,
 - Analysis of blob motion in NSTX GPI.